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Abstract
Little is known about effects of salinity and flooding on plant symbionts, including baldcypress trees (Taxodium distichum), the
dominant trees in many swamp ecosystems in the southeastern US. In this study, we characterize the culturable fungal and
bacterial endophytes in the roots and leaves of baldcypress trees at four sites with varying levels of salinity and flooding regimes
in southeastern Louisiana. Both salinity and flooding (water level) contributed to endophytic community composition of leaves
and roots. We found that diversity and endophyte isolation frequency were higher in roots than in leaves, with leaf bacteria being
almost negligible. Our study demonstrates a connection between environmental variables, plant symbionts, and a key restoration
species. This work may help in predicting future outcomes of sea level rise for endophytes communities in baldcypress and other
wetland plants.
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Introduction

Land use change, sea level rise, and associated changes in
salinity, hydrology, and flood dynamics are global concerns.
However, the effects are especially acute in coastal communi-
ties and subsiding areas near river deltas, as in southern
Louisiana, where swamps and marshes are being degraded
into marsh and open water (Shaffer et al. 2009). Little is
known about effects of salinity and flooding on a key group
of plant symbionts, the endophytes – microscopic fungi and
bacteria that live asymptomatically within tissues of host
plants (Porras-Alfaro and Bayman 2011). These microbial
symbionts have been shown to increase host plants’ resilience

to biotic and abiotic stressors such as herbivory, disease, sa-
linity, and temperature (Rodriguez et al. 1997; Redman et al.
2002; Rodriguez et al. 2009; Friesen et al. 2011; Redman et al.
2011). Endophytes have been found throughout the tissues of
all plants examined to date (Friesen et al. 2011) including
baldcypress trees (Taxodium distichum) (Kandalepas et al.
2010).

Baldcypress are the dominant trees in Cypress-Tupelo
swamp ecosystems in the southeastern US. These deciduous
conifers are crucially important to the Gulf Coast region as
major buffers against storm damage and as focal restoration
species (Shaffer et al. 2009). Because most plants have narrow
salinity tolerances, baldcypress’s ability to span freshwater to
slightly brackish water (2 ppt salinity) and persist in variable
flooding conditions (Allen et al. 1996) makes it an excellent
candidate for studying interactions between salinity levels,
flooding, and plant endophytes.

In this study, we characterized the culturable fungal and
bacterial endophytes in the roots and leaves of baldcypress
trees at four sites with varying levels of salinity and flooding
in Southeastern Louisiana. Understanding the factors that
structure microbial community composition has been the fo-
cus of much research over the past decades (Christian et al.
2015). Previous studies have demonstrated that endophyte
community composition is influenced by plant organ (i.e. root,
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stem, leaf, etc.) and environmental variables (Compant et al.
2010; Zimmerman and Vitousek 2012; Higgins et al. 2014;
de Souza et al. 2016). For wetland plants, however, we do not
know how interactions among environmental variables in-
fluence symbiont communities, including those variables
associated with sea level rise. We predicted that
baldcypress roots and leaves would harbor diverse (species
rich) communities of culturable endophytes and that differ-
ences in the community diversity, isolation frequency, and
composition would be driven by plant organ, salinity, and
flooding. Our work on baldcypress endophyte communi-
ties explores the connection between the environment,
plant symbionts, and a key restoration species, and may
help in making predictions about the effects of sea level
rise on wetland endophyte communities.

Methods

Study Sites/Sampling

In October 2014, we harvested root and leaf tissue from 12
mature T. distichum trees (>20 m height) from four unique
sites (n = 48) along a degradation gradient in southern
Louisiana (Table 1). We sampled apparently healthy leaves
and roots from three locations on each tree. All trees within a
site were ~100 m apart from each other and inundated with
water, having roots completely submerged at the time of col-
lection. Degree of degradation was determined by flooding
regime, salinity, and anthropogenic access/disturbance.
Permanently flooded and impounded sites were designated
as more degraded than periodically flooded sites; and brack-
ish sites were more degraded than fresh sites. The four sites,
listed from the healthiest tomost degraded, are: Tickfaw (TF),
a periodically flooded freshwater swamp within the Tickfaw
River floodplain; Jean Lafitte (JL), a permanently flooded
freshwater site in Jean Lafitte National Historical Park and
Preserve; Honey Island Swamp (HI), a permanently flooded
freshwater swamp site along the Pearl River; and Bonnet
Carre Spillway (LP), a brackish site on Lake Ponchartrain
that is permanently inundated (Table 1). Salinity data for each
site was collected from the USGS Coastwide Reference
Monitoring System (CRMS) website (Steyer 2010) and is
the average of the measurements taken monthly 1 year prior
to our collection dates.

Culturing

Samples were placed on ice and transported into refrigeration
at Tulane University for processing following well-
established protocols (Arnold et al. 2003) within 48 h of
collection. For leaves, a sterile blade was used to remove leaf
tips and the remaining tissues were cut into 2 mm long leaflet Ta
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pieces and then surface sterilized via serial immersion in
95% ethanol (10 s), 10% Clorox (5.25% NaOCl-; 2 min),
and 70% ethanol (2 min). For roots, apparently healthy, fine
roots were selected, cut into 2 mm length sections and se-
rially immersed in 70% ethanol (10 s), 50% Clorox (2 min),
and sterile water (2 rinses). A surface sterilization control
plate was used for each plant in this collection to be sure
that surface sterilization was complete. For each individual
tree, 32 surface sterilized sections of roots and 32 sections
of leaves were randomly selected for plating on growth
media. Of these 32, 16 pieces were plated on 2% malt agar
(2% MEA: 20 g of Difco Malt Extract and 20 g of Difco
Agar per L of deionized water) which is selective for fungi
(Fröhlich and Hyde 1999). The remaining 16 pieces were
plated on a non-salt containing nutrient agar (BD Difco
Nutrient agar containing: beef extract 3 g/L, peptone 5 g/
L, agar 15 g/L) which is selective for bacteria. The total
sampled was n = 768 leaf and root pieces plated to screen
for fungal abundance and n = 768 leaf and root pieces plat-
ed to screen for bacterial abundance. Plates were sealed,
incubated at room temperature, and monitored daily for
5 weeks for emergent fungi and bacteria. Emergent fungal
and bacterial colonies were counted and isolated into pure
cultures. Isolates were photographed and preserved in 50%
glycerin and water, respectively, in the Van Bael laboratory
at Tulane University.

Sequencing

Up to 50% of the surviving symbionts at each site were ran-
domly selected for Sanger sequencing. Total genomic DNA
was extracted using a MoBio Ultraclean DNA Isolation Kit.
For fungi, we used primers ITS1F and LR3 to amplify the
nuclear ribosomal internal transcribed spacers (nrITS) and
600 bp of the large ribosomal subunit (partial LSU) as a single
fragment (nrITS-partial LSU) following Higgins et al. (2011).
For bacteria, we used primers 27F and 1492R to amplify the
16S rDNA gene DNA. All PCR products were submitted to
Beckman Coulter Genomics for Sanger sequencing. Sequence
editing was carried out with Sequencher v5.0 (Gene Codes
Corporation, Ann Arbor, MI). Sequences with 97% similarity
were considered to be representative of the same operational
taxonomic unit (OTU). Representative sequences of each
OTU were compared to NCBI archives through BLAST
searches to assign putative taxonomic identities using
Geneious version r9 (http://www.geneious.com, Kearse et al.
2012). Voucher cultures of all OTUs were archived in the Van
Bael lab at Tulane University, under accession numbers 1182–
1750. Accession numbers for sequences deposited in the
NCBI Genbank are: MK036892-MK036991, as well as
KY765153, KY765188, KY765159, KY765161, KY765168
referenced in Washburn and Van Bael (2017).

Environmental Data

Environmental data for each site was collected from the USGS
Coastwide Reference Monitoring System (CRMS) website
(Steyer 2010). Using google maps, we selected the CRMS
stations that were within 3 miles of the collection sites. For
the sites Lake Ponchartrain, Tickfaw, Honey Island and John
Lafitte we used data from CRMS stations 6299, 0046, 6088,
and 0234, respectively. The following environmental vari-
ables were used and accounted for data collected over a 1-
year period prior to our plant tissue sampling date: site, date
of collection, average salinity, maximum salinity, average wa-
ter level, minimumwater level, maximumwater level, average
temperature, minimum temperature, maximum temperature,
tidal amplitude, and average time flooded.

Statistical Methods

Endophyte isolation frequency (EIF) was measured as a pro-
portion of root/leaf pieces which grew a symbiont into culture
over the total number of pieces plated in growth media
and compared via Mann-Whitney U tests in PAST
(PAlaeontological STatistics). All alpha diversity metrics were
created with Fisher’s Alpha (FA). We used Bray-Curtis dis-
similarity to compare community composition and to assess
among community (beta) diversity. We conducted a db-RDA
in the R package vegan (Oksanen et al. 2016) to determine
which environmental variables best explained the endosymbi-
ont communities (in Bray-Curtis dissimilarity matrix format).
We used the ordistep function to select from the environmen-
tal data variables. The anova function was used to determine
the significance per variable that contributed to the model
(Table 2).

Results

We cultured 364 bacterial and fungal endophyte isolates from
leaves and roots of 48 T. distichum trees from southern
Louisiana. We acquired DNA sequences from a subset of
151 isolates: 113 fungal and 38 bacterial sequences,
representing 43 fungal and 17 bacterial OTUs (Supplementary
Table S1 and S2). All species names are putative taxonomic
identities based on 97% sequence similarity. Themost common
fungal species were Eutypa lata, which is a known pathogen
in sugarcane (Saccharum sp.) and grapes (Vitis vinifera)
(Erincik et al. 2001) andMetarhizium brunneum, a fungal strain
which is used as a biocontrol. The most common bacterial
species were Bacillus ceres, a plant growth promotor known
to increase salt tolerance in safflower (Carthamus tinctorius)
plants (Reyad et al. 2017) and Bacillus aryabhattai, a plant
growth promoting rhizobacteria (Park et al. 2017).

Wetlands
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Plant Organ

Endophytic diversity, as calculated by Fisher’s Alpha, was
seven times higher in roots (FA = 27.70) than in leaves
(FA = 3.51). We observed a greater EIF of culturable endo-
phytes in the roots than in the leaves of baldcypress (Mann
Whitney U = 2225.5, n = 98, p < 0.001) (Fig. 1).

Site

Among sites, Jean Lafitte had the highest diversity of endo-
phytes (Fisher’s Alpha: HI =12.50, JL = 29.18, LP = 12.66,
TF = 8.83). Tickfaw and Lake Ponchartrain significantly dif-
fered from one another in EIF (Mann Whitney, U = 2225, n =
98, p = 0.035) and fungi were isolated more frequently than
bacteria across all sites (MannWhitney, U = 3920, n = 98, p =
0.047) (Fig. 1).

Environmental Data

Maximum water level and average salinity in the year prior to
collection explained a significant amount of variation in the
culturable endophyte communities (F = 3.02, p < 0.001); (F =
1.64, p < 0.041) (Fig. 2). For root communities alone, the
maximum water level explained a significant amount of var-
iation within the culturable endophyte communities (F = 1.56,
p < 0.032) and average salinity was found to improve the
model during model selection (F = 1.45, p < 0.058). Within
cultured fungal communities (excluding bacteria), maximum
water level in the year prior to collection explained a signifi-
cant amount of variation in community composition (F = 4.59,
p < 0.02).

Discussion

Diversity and Isolation Frequency

We found that diversity and isolation frequency of culturable
endophytes in baldcypress were greater in roots than in leaves.
Leaf bacterial diversity and EIF were quite low when

compared to studies on other conifers and other deciduous
temperate trees examining both leaves and roots (Izumi et al.
2008; Wilson 2015). This is the first study done on the leaves
of a tree that is both deciduous and a conifer (and having
high level of phenolic terpenoid compounds present in
leaves (Falk and Wolkenstein 2017)) and we speculate that
these factors could have some influence on the dearth of
endophytes found. However, this could also be attributed
to the difficulties of using culture-based methods to survey
bacterial communities.

The leaf endophyte community was dominated by the pu-
tative fungal pathogen, Eutypa lata (Erincik et al. 2001). The
greater endophytes isolation frequency observed at Tickfaw
can also be attributed to the presence of E. lata, which
comprised 52 of the 112 isolates. Even though we collected
fungi from apparently healthy leaves, the E. lata isolates
may actually represent pathogens, as E. lata is a known
generalist pathogen infecting sugar cane, grapes, and
woody fruit trees such as Prunus sp. (Lecomte et al.
2000). Further investigation into the relationship between
E. lata and baldcypress is needed.

Environmental Variables

Both salinity and flooding (water level) contributed to endo-
phytic community composition of baldcypress endophytes.
Microbes have variable tolerances to salt, and only certain
microbes are able to persist when conditions become more
saline (Chowdhury et al. 2011). Changes in salinity alter the
community composition of bacteria in soil samples and in-
creases in salinity of 5% or more significantly decreased the
genetic diversity of bacteria in soil samples (Omar et al. 1994).
Fungal diversity and community composition are also altered
in the presence of NaCl (Ke et al. 2013). For arbuscular my-
corrhizal fungi, the presence of NaCl delayed germination of
spores and reduced overall hyphal growth, the potential mech-
anism being the diversion of energy from metabolism to os-
moregulation (Juniper and Abbott 2006). Because many
plants draw upon the rhizosphere/soil microbiome to assemble
their own microbiomes (Compant et al. 2010), changes in the
soil microbiome due to salinity shifts could be responsible for

Table 2 ANOVA results based
on R capscale model selection of
all environmental variables. Bold
indicates significance

Organ Symbiont Type Max Water Level (F, p) Average Salinity (F, p)

Roots + Leaves Bacteria + Fungi F = 3.02, p = 0.001 F = 1.64, p = 0.041

Roots + Leaves Bacteria F = 0.79, p = 0.671 F = 0.93, p = 0.585

Roots + Leaves Fungi F = 4.59, p = 0.002 F = 1.77, p = 0.092

Roots + Leaves Fungi (Eutypa lata excluded) F = 2.08, p = 0.007 F = 1.66, p = 0.044

Roots Bacteria + Fungi F = 1.56, p = 0.032 F = 1.46, p = 0.058

Roots Bacteria F = 0.79, p = 0.390 F = 0.93, p = 0.522

Roots Fungi F = 2.16, p = 0.011 F = 1.68, p = 0.065

Leaves Bacteria + Fungi F = 2.43, p = 0.065 F = 2.63, p = 0.052

Wetlands



Fig. 1 Plant organs and sites differed in endophyte isolation frequency and
diversity of endophytes (Organs: root bacteria = RB, root fungi = RF, leaf
bacteria = LB, leaf fungi = LF; Sites: Tickfaw = TF, Honey Island = HI, Jean
Lafitte = JL, Bonnet Carre Spillway at Lake Ponchartrain = LP). a Diversity
(measured by Fisher’s Alpha) was highest in roots and for root bacteria.

b Among sites, diversity was highest at Jean Lafitte, the least disturbed
area. c Endophyte isolation frequency (abundance, mean ± standard error)
was highest for leaf fungi and d at Tickfaw, the least degraded site. Lower
case letters show which groups are significantly different using a Bonferroni
correction (p<0.05)

Fig. 2 Sites differed in community composition of endophytes. Salinity
and maximum water level described significant variation with
community composition. Each data point represents the microbial
community composition (of fungi and bacteria combined) of one tree

and is based on Bray-Curtis similarity of communities at the OTU level.
Vectors indicate the weight and direction of those environmental variables
that were best predictors of endophyte community composition as sug-
gested by the results of the db-RDA

Wetlands



the change in plant microbial communities, particularly for
root endophytes, which recruit microbes from the rhizosphere
and soil in closest proximity to the roots.

Salinity and flooding have known negative effects on
baldcypress physiology individually, and these effects are in-
creased in combination, demonstrating an interactive effect
which may influence baldcypress populations (Allen et al.
1996; Krauss et al. 1998, 1999). Some research supports the
idea that with increased depth and duration of flooding,
baldcypress growth declines and mortality is increased
(Souther and Shaffer 2000), potentially due to a decrease in
oxygen and nutrient availability (Conner and Day Jr. 1992).
These changes in plant physiology may influence the tree’s
recruitment of endophytes or have weakened the tree’s de-
fenses to pathogens, thus influencing endophyte community
assembly.

Limitations

Though our study utilized agar media recipes consistent with
many other endophyte studies (Arnold et al. 2003; Mighell
and Van Bael 2016; Kandalepas et al. 2015) the richness,
source (plant vs. animal) and composition of nutrients could
bias the selection of microbial isolates. Overall, culture-based
work provides a very limited view of the endophyte commu-
nity, as it is estimated that only a fraction of microbes, espe-
cially bacterial, can be grown in culture (Izumi et al. 2008;
Ulrich et al. 2008). Future work should focus on using an
amplicon-based approach to better assess true diversity. This
study also failed to account for plant genotypes, which can be
highly variable among baldcypress (Allen et al. 1996).
Gehring et al. 2017 demonstrated that an interaction between
plant genotypes and their mycorrhizal fungal symbiont com-
munity was important for drought tolerance in pine trees and
that mycorrhizal community composition was strongly driven
by plant genetics. Interactions between plant genotype, endo-
phytic communities, and environmental stress should be ex-
amined in situ or tested experimentally using advanced mo-
lecular methods.

Conclusion

Our study demonstrates a connection between environmental
variables, plant symbionts, and a key restoration species.
Baldcypress’ culturable endophyte community composition
was associated with both salinity and flooding. As coastal
ecosystems change due to sea level rise, subsidence, and hu-
man activities, we can expect variability in water levels and
greater saline incursions into previously freshwater areas. It is
possible that the observed clines in salinity and differing hy-
drological regimes at these sites can be used to predict future
outcomes of sea level rise for baldcypress endophytes and
endophyte communities in other wetland species.
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