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Abstract The unprecedented size of the deepwater

horizon oil spill and scope of the subsequent response

elicited intense and sustained interest in microbial

responses to oiling, especially in salt marshes, which

have featured prominently in debates about best

practices to prevent and remediate oiling of vulnerable

ecosystems. A number of studies have examined salt

marsh soil microbial communities following the spill,

but most have primarily concentrated on prokaryotes.

The extent to which oiling elicited shifts in fungal

diversity and community composition remains

unclear. Here we present spatial and temporal com-

parisons of salt marsh soil fungal communities at two

southern Louisiana salt marshes with contrasting

oiling histories. We profiled fungal communities in

2013 alongside corresponding measurements of poly-

cyclic aromatic hydrocarbons to assess whether and

how responses to oiling are distinguishable from

natural heterogeneity. Analyses based on high-reso-

lution unbiased spatial sampling demonstrated that

fungal communities did not align with shoreline

classification of oiling less than three years after

initial oiling, despite observable differences in oil
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residues and secondary oiling. Notably, extensive

sampling allowed delineation of benchmark sampling

thresholds and illustrated the value of using ranked

differentials of relative abundance to characterize soil

fungal communities. Our findings highlight the need

for combining high-resolution sampling with judg-

ment-based and systematic sampling approaches to

accurately capture responses of salt marsh soil fungal

community to oiling.

Keywords Salt marsh � Fungi � Microbiome � Oil �
Rhizosphere � Spartina

Introduction

The provisional nature of responses to contamination

of coastal marsh ecosystems during the 2010 deep-

water horizon (DWH) oil spill revealed the need to

address considerable deficits in understanding of

shoreline remediation and recovery. Approximately

0.5 billion liters (3.1 million barrels) of oil were

released into the northern Gulf of Mexico during the

largest marine oil spill in history (Barbier 2015). A

significant portion of the released oil was weathered

into residues by physical, photochemical, and biolog-

ical processes (Matthew et al. 2016) prior to landing

on 1773 km of coastline, including 754 km of marsh

shoreline in Louisiana (Michel et al. 2013). Non-

intervention was the recommended response to pre-

vent further damage to fragile marshes (Michel et al.

2013), with the expectation that as time passed,

microbial degradation would attenuate the effects of

oil residues on marsh ecosystems. Though some

evidence has been found of post-spill interactions

between oil residues and microbial communities in

salt marsh soils [reviewed in Atlas et al. (2015)],

characterization of expected progress was compli-

cated by burial and redistribution of oil residues via

sedimentation and wind-wave action. Consequently,

questions remain about microbial responses to oiling

and the fate of oil in the environment (Atlas and Hazen

2011; Lin and Mendelssohn 2012; Engel et al. 2017).

Understanding of microbial degradation of oil in

coastal marshes following the DWH spill largely

derives from work on soil bacterial communities. The

focus on bacteria in part reflects longstanding per-

spectives that hydrocarbon-degrading prokaryotes are

a key element to removal of oil from marine and

coastal environments (Joye et al. 2016). There is

growing recognition, however, that fungi have the

potential to respond to and interact with oil residues.

While fungi are generally considered to be less

efficient metabolizers of hydrocarbons than bacteria,

interactions with bacterial communities can foster

stepwise degradation of hydrocarbons (Leahy and

Colwell 1990; Atlas 1995; Head et al. 2006; Atlas and

Hazen 2011; Mendelssohn et al. 2012; Joye et al.

2014, 2016; Matthew et al. 2016). And, unlike

bacteria, fungi also have the potential to transport

and disperse hydrocarbons via mycelial networks

(Furuno et al. 2012).

Only a few studies have examined soil fungal

communities following contamination of salt marshes

from the DWH oil spill. Whereas (at least) eight

studies have characterized salt marsh soil bacterial

communities relative to oiling from the Deepwater

Horizon spill (Beazley et al. 2012; Looper et al. 2013;

Mahmoudi et al. 2013; Atlas et al. 2015; Marton et al.

2015; Engel et al. 2017; Bae et al. 2018; Tatariw et al.

2018), to our knowledge, only two studies have thus

far profiled marsh soil fungal communities in relation

to the oil spill (Mahmoudi et al. 2013; Lumibao et al.

2018). This asymmetry in taxonomic focus is well

reflected in the availability of data on soil microbes in

archives of research on the DWH spill. For example,

only two datasets were returned in a recent search of

the Gulf of Mexico Research Initiative Information

and Data Cooperative (GRIIDC, Harte Research

Institute, Texas A&M University—Corpus Christi)

database for ‘‘fungi’’, compared with 171 datasets that

were returned from a search for ‘‘bacteria’’. Accord-

ingly, additional in-depth, assessments of soil fungal

communities are warranted to better understand the

fate and effects of oil in contaminated salt marshes.

Here we present spatial and temporal comparisons

of soil fungal communities in two southern Louisiana

(LA) salt marshes with contrasting histories of

contamination from the DWH oil spill. We profiled

fungal communities alongside corresponding mea-

surements of polycyclic aromatic hydrocarbons

(PAHs) at a heavily oiled, but remediated, site in

Bay Jimmy and a lightly oiled site in Fourchon,

[Fig. 1; Michel et al. (2013)] to assess whether and

how fungal responses to oiling are distinguishable

from natural heterogeneity. We hypothesized that the

differential oiling of the two sites results in distinct
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fungal communities that correspond to the relative

abundance of local PAHs. Unlike most other studies of

microbial responses to oiling, we did not target plots

with evident oil residues. Rather, we sampled across

transects with the goal of an unbiased characterization

of entire marsh shorelines. Furthermore, we assessed

both marsh sites during two distinct time points

following a balanced sampling design. Our analyses

probed for relationships between PAHs and alpha

diversity, beta diversity, and differential abundances

of fungal taxa, with a focus on known hydrocarbon-

degraders. Notably, we applied multinomial regres-

sion models and used ranked differential abundances

to characterize microbial responses to the DWH oil

spill. Taking these approaches enabled us to sidestep

problematic assumptions about sampling and techni-

cal biases that are typical of microbial analyses based

on next-generation sequencing (Gloor et al. 2017),

allowing for more confident identification of taxa that

are most differentially abundant between marsh sites

and time points, and thus providing more informed

perspectives on the pervasive effects of primary and

secondary oiling events, including detectability rela-

tive to natural biotic heterogeneity. We were also able

to determine benchmark sampling thresholds neces-

sary to clearly describe salt marsh soil fungal

communities and to infer the merits of judgment-

based and systematic sampling designs (Edwards

1998; Smith et al. 2017) to capture responses to

patchily distributed oil residues across marsh

shorelines.

Methods

Study sites

Our study focuses on the two sites described by

Kandalepas et al. (2015) and Lumibao et al. (2018).

Briefly, our site in Bay Jimmy, LA (29�26037.6600 N
89�53014.7400 W) is a salt marsh island dominated by

Spartina alterniflora. After the site was oiled in June

2010, it served as a test site for shoreline remediation

(Zengel 2011), though surface and subsurface oil

Fig. 1 Distribution of PAHs within samples and at sites. a and

b Abundance of the four classes of PAHs measured at each site,

with the y-axis log-transformed for visual clarity. c (Bay Jimmy)

and d (Fourchon) Schematic of each marsh site, where each dot

(jittered for clarity) represents a sample, colored by sampling

time point and sized by the quantity of PAHs present in the core.

Inset shows location of sites in southeastern Louisiana relative

to New Orleans

123

Wetlands Ecol Manage



residues persisted across the shoreline. The plots we

sampled were replanted with Spartina alterniflora as

part of a separate study on marsh restoration (Blum

et al. 2014; Bernik et al. 2021; Zengel et al. 2021). Our

other site, located at Fourchon, LA (29�0800000 N 90�
080 4300 W), is a salt marsh immediately north of

Caminada Headlands beach, which is dominated by

Spartina alterniflora and invading Avicennia germi-

nans. At the time of the spill, the Fourchon site

remained largely unoiled, although small amounts of

oil were deposited along specific locations of the

shoreline by storms in June 2010 (Rodrigue et al.

2020). While both sites are located within the

Barataria Basin, the Bay Jimmy site tends to be less

saline than the Fourchon site according to historical

data from nearby Louisiana coastal reference moni-

toring sites (CRMS). From 2006 to 2020, CRMS sites

near the Bay Jimmy site annually averaged 11.4 ppt

salinity (sd = 5.2), with a monthly mean salinity of 7.3

ppt (sd = 4.1) in June and 14.8 ppt (sd = 5.6) in

December. CRMS sites near the Fourchon site aver-

aged 16.5 ppt salinity (sd = 4.1) annually, and 15.2 ppt

(sd = 4.8) in June and 18.4 ppt (sd = 4.6) in Decem-

ber. However, these conditions should be taken as

broad trends in the general area rather than precise site

descriptions.

Sampling

We collected a total of 89 soil cores, with 41 taken

from the Bay Jimmy site and 48 taken from the

Fourchon site. Samples were taken at two time points.

Cores were taken during the winter (January) and also

during the summer (late June/early July) of 2013

(Online Resource: Table S1). Sampling locations at

Bay Jimmy corresponded to 22 plots (5 9 5 m)

established by Bernik (2015) spanning a 350 m

southwesterly shoreline. At the Fourchon site, we

took soil cores from 24 plots (3 9 3 m) in areas

dominated by S. alterniflora. Plots ran across two

16 m transects, perpendicular to the shoreline and

separated by 12 m of oiled shoreline. Note that

sampling differed at the two sites due to the physiog-

raphy of each site and the design of prior studies.

Consequently, the area sampled at the Bay Jimmy site

was approximately 5 times greater, constituting

approximately 25 times more shoreline than the

sampled area at the Fourchon site. While this differ-

ence in sampling area may affect site level estimates of

fungal alpha diversity and beta diversity (dispersion)

at the two sites, it would not be expected to affect

estimates at the plot level. Soil cores measured 2 cm in

diameter by 6 cm deep. Samples were taken from the

approximate center of each plot at both sites. Cores

were immediately placed on ice and frozen at - 20

�C within 24 h of collection.

Oil analysis

We analyzed 39 cores sampled from the Bay Jimmy

site and 43 cores from the Fourchon site for oil content

(Online Resource 1: Table S1). The seven remaining

samples were not analyzed because of errors in sample

management after completion of DNA extractions.

We analyzed PAH content in the bottom 2–6 cm of the

cores (Online Resource 1: Table S1). Approximately

10 g of soil was used for extraction of crude oil

components for each core. Samples were analyzed

with gas chromatography-mass spectrometry (GC–

MS) following methods detailed by Curtis (2018) with

the exception that samples were mixed with diatoma-

ceous earth instead of sodium sulfate and magnesium

sulfate to remove moisture prior to accelerated solvent

extraction. Four classes of alkylated PAHs were

quantified (C1-C4 naphthalenes, C1-C4 phenanthre-

nes, C1-C3 dibenzothiophenes and C1-C4 chrysenes)

based on prior studies of crude oil fate in coastal

ecosystems (Curtis 2018; Collins et al. 2020; Rodrigue

et al. 2020).

Fungal metagenomics

We analyzed microbial content in the top 2 cm of each

core as described in Lumibao et al. (2020). Briefly,

genomic DNA was extracted with the Mo-Bio Power

Soil Isolation Kit (MO BIO Laboratories, Inc., Carls-

bad, CA, USA) according to the manufacturer’s

protocol and sent to ACGT Inc. (Illinois, USA) for

amplification and sequencing on an Illumina NextSeq

500 platform (Illumina Inc., San Diego, CA). Fungi

were targeted by sequencing the ITS1 region of the

rDNA using primers BITS/B58S3 (Bokulich andMills

2013).

Sequence trimming and quality filtering

ACGT Inc. demultiplexed and trimmed reads for

adapters and quality control with Cutadapt 1.14
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(Martin 2011) in paired-end mode. After quality

filtering, reads were merged and clustered at 97%

similarity into operational taxonomic units (OTUs)

with QIIME 1.9.1 (Caporaso et al. 2010) using an open

reference method with the UCLUST algorithm (Edgar

2010). UNITE 7.1 was used as a reference database for

clustering and subsequent taxonomic assignment

(Nilsson et al. 2015). To improve understanding of

the influence of rare taxa on analyses, we broadly

categorized OTUs as ‘‘dominant’’ if they were repre-

sented by C 0.1% of the mean total reads in C 5

samples (approximately � of the number of samples

taken at each site and timepoint). Any OTUs that did

not meet these criteria were classified as ‘‘rare’’. These

thresholds and binary designations were used to gain

perspective on the potential influence of rare taxa on

ecological metrics and analyses. Here we present

analyses based on the full set of OTUs because parallel

analyses, based on a subset of the data in which the

rare taxa were not included, did not change our

interpretations. However, we did use the dominant and

rare categories to highlight key results in the presen-

tation of our analysis of differentially abundant taxa.

The analyses excluding the rare taxa are available

upon request. All sequences were deposited in NCBI

GenBank under the BioProject accession

PRJNA603629.

Statistical analyses of PAHs

Unless otherwise mentioned we conducted all statis-

tical analyses in R version 4.0.2 (R Core Team 2020).

Analyses and figures depended heavily on the tidy-

verse (Wickham et al. 2019), cowplot (Wilke 2020),

compositions (van den Boogaart et al. 2020), phyloseq

(McMurdie and Holmes 2013), vegan (Oksanen et al.

2016), data.table (Dowle and Srinivasan 2020),

genefilter (Gentleman et al. 2020), ggrepel (Slowi-

kowski 2020), ggpolypath (Sumner 2016), ggforce

(Pedersen 2020), rgdal (Bivand et al. 2020), and ggsn

(Santos Baquero 2019) packages.

Differences in total PAH abundance between sites

and time points were modeled in the package brms

package (Bürkner 2017; Carpenter et al. 2017). Based

on exploratory analysis of the data, and comparisons to

models built on gaussian and gamma distributions

without transformation of total PAHs, we selected a

log-transformation of total PAHs and a skew normal

distribution with the default priors as the best fitting

model: log(Total PAHs) * Site 9 Time point.

We performed a principal components analysis

(PCA) to visualize variation in PAH composition of

each sample (Online Resource 1: Figure S1) and we

tested for differences in PAH composition by con-

ducting a PERMANOVA of Aitchison distances.

Aitchison distances account for the compositional

nature of the data through transforming values into

centered log-ratios and then taking the Euclidean

distance of sample compositions (Pawlowsky-Glahn

and Egozcue 2006; Brückner and Heethoff 2017). We

then used the ecodist and geosphere packages to

conduct Mantel tests for an autocorrelation of

Aitchison distances of PAHs with geographic

distance.

Statistical analyses of fungal alpha diversity

We estimated the alpha diversity of each site and time

point with three approaches to circumscribe possible

sources of error. For all three approaches we estimated

alpha diversity with richness, the Shannon index

(Shannon 1948), and the Simpson index (Simpson

1949). We transformed these indices into Hill num-

bers, or effective number of species, of orders zero,

one and two. Hill order of zero is equivalent to

richness, Hill order of one is calculated as the

exponential of the Shannon index, and Hill order of

two is calculated as the reciprocal of the Simpson

index. These transformations represent diversity more

intuitively by describing alpha diversity as the number

of equally-common species required to give a partic-

ular value of an index (Jost 2006).

First, we estimated alpha diversity at the plot level

and then grouped by site and time point for statistical

comparisons. This approach gives a sense of the

variation in diversity across a site but not the diversity

at the site level. Richness, the Shannon index, and

Simpson index were calculated with functions from

the vegan package (Oksanen et al. 2016) and trans-

formed as described above. We aslo used these

estimates to look for a relationship between the alpha

diversity and PAH content of each sample using linear

regression. Based on exploratory analyses, we relied

on the package brms to fit untransformed data to

‘‘skew normal’’ distributions with default priors.

Second, we estimated diversity at the site-level by

pooling the OTUs of each sample within a site or time

123

Wetlands Ecol Manage



point prior to estimating diversity. This approach

captures site level richness, but may inflate the

unevenness of other diversity metrics. Estimates of

Hill numbers were calculated with the R package

iNEXT (Chao et al. 2014; Hsieh et al. 2016). Variation

was calculated as 95% CI from 1000 bootstraps of a

‘‘bootstrap community’’, with a sample size equal to

the total number of reads in the group of samples

(Chao and Jost 2012). Lastly, we estimated diversity

as site-level diversity, based on incidence in plots.

Here, estimates are calculated as the site richness,

weighted by the number of plots in which each OTU

appears across the site and time point. For example,

diversity would be equivalent to richness if the number

of samples in the group is equal to one. Thus, site

richness is captured as well as the frequency of

occurrence across samples and gives a sense of how

evenly taxa are shared by plots across the site. As

described above, estimates of Hill numbers were

calculated with the R package iNEXT (Chao et al.

2014; Hsieh et al. 2016) and variation was calculated

as 95% CI from 1000 bootstraps of a ‘‘bootstrap

community’’, with a sample size equal to the total

number of reads in the group of samples. We also

generated rarefaction curves to estimate the number of

soil cores needed to accurately estimate site-level

diversity with this approach and considered any two

points along the curve to be significantly different at

the 5% level if the confidence intervals did not overlap

(Chao et al. 2014).

Statistical analyses of fungal beta diversity

We assessed whether Bray–Curtis dissimilarity values

of community composition differed by site, time, and

total PAH abundance with the adonis (PERMA-

NOVA) function in the vegan package. Post-hoc

PERMDISP tests were used to determine whether

differences were due to shifts in community hetero-

geneity or composition (Anderson and Walsh 2013),

with corroboration from a non-metric multidimen-

sional scaling ordination (NMDS, Fig. 3) and Mantel

tests were conducted in vegan to examine potential

autocorrelation between community composition and

geographic distance. Variation in Bray–Curtis dissim-

ilarity values for each site was estimated as multivari-

ate pseudo-standard error (MultSE) to determine how

sampling effort influenced estimates of community

dissimilarity. MultSE measures variability in the

group centroid as a function of the number of samples

in the group and can be interpreted like rarefaction

curves. The mean variability in the position of the

sample centroid is estimated by permutation and the

error bars are 95% CI, estimated by bootstrapping.

Both estimates were based on 10,000 iterations,

implemented with code derived from Anderson and

Santana-Garcon (2015) that was optimized for effi-

ciency by Jon Lefcheck (https://github.com/jslefche/

multSE). Finally, we tested for a linear relationship

between community composition and PAH abundance

via a distance-based redundancy analysis (dbRDA),

with significance determined by the ANOVA-like

permutation test implemented in vegan. For all of the

aforementioned tests, we evaluated the potential

influence of relative abundance and composition

metrics on community composition by running par-

allel analyses with Jaccard index and Aitchison dis-

tance values instead of Bray–Curtis dissimilarity

values.

Statistical analyses of differentially abundant taxa

We identified differentially abundant taxa with the

software Songbird (Morton et al. 2019) using default

filtering parameters. We considered OTUs to be

strongly associated with a site or time point when

recovered within the extreme deciles of site and time

point rankings. Songbird relies on multinomial regres-

sion to estimate a log-ratio of taxa (i.e., differentials)

within an assemblage as a function of explanatory

variables. The transformation liberates comparisons of

relative abundances of taxa from the bias of microbial

DNA load in each sample and centers the information

around zero. The multinomial model avoids the

problematic assumptions of independence or normal-

ity while addressing zero-inflation, which is a common

feature of microbial community datasets. The most

extremely ranked OTUs are those that have changed

the most, relative to the average taxa, in reference to

the explanatory variable. Importantly, a log-ratio of

zero does not necessarily indicate that the absolute

abundance of the taxon did not change. It only

indicates that it did not change relative to the average

microbe in the data (Morton et al. 2019). We selected

models by visual comparison of model fits and the Q2

statistic generated by the QIIME2 (Bolyen et al. 2019)

implementation of Songbird. Q2, which is functionally

similar to the measure R2 used in standard linear
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regression, is calculated as 1—(avg. absolute model

error/avg. absolute baseline model error). Therefore, a

Q2 value close to 1 denotes a high predictive accuracy

of microbial composition by the model, whereas a

value close to zero (including negative values) indi-

cates low predictive accuracy and/or overfitting. We

augmented our interpretation with a literature review

to derive support for determinations of hydrocarbon-

degrading taxa, regardless of inferred associations

with PAHs. Drawing on several prior reviews (Atlas

1981; Kirk and Gordon 1988; Müncnerová and

Augustin 1994; Cerniglia 1997; da Silva et al. 2003;

Verkley et al. 2004; Prince 2010; Furuno et al. 2012;

Blasi et al. 2016; Hashem et al. 2018; Prenafeta-Boldú

et al. 2018), we compiled a list of fungal genera with

species described as being associated with hydrocar-

bons or having the ability to metabolize hydrocarbons.

Results

Oiling history and PAH weathering ratios

We did not find a difference in PAH abundance or

PAH composition in our soil cores between sites or

time points (Fig. 1 and Online Resource 1: Tables S2,

S3, Fig. S1). Approximately 80% of our samples

contained 1–10 lg/g of total PAHs, which is compa-

rable in magnitude to content observed in a coincident

survey of other sites oiled during the DWH spill

(Turner et al. 2019). The remaining samples contained

one to two orders of magnitude more PAHs. We found

that higher molecular weight 4-ring C1-C4 chrysenes

constituted a relatively small proportion of detected

residues compared to other PAHs, especially 3-ring

Phenanthrenes, which is suggestive of secondary

oiling. Notably, within-site distribution of PAHs did

not align with survey-based observations of where oil

was most heavily deposited as a consequence of the

DWH spill (Fig. 1C, D). We expected oil residues at

the Bay Jimmy site to progress along a gradient of high

to low abundance from the west to east end of the

island, but we instead recovered a heterogeneous

distribution. At the Fourchon site, we found oil

residues further into the marsh than expected consid-

ering that deposition was observed at the midpoint of

the shoreline. There was no evidence for spatial

autocorrelation between Aitchison distance of PAHs

in each sample and geographic distance according to a

Mantel test.

Sequencing and diversity

After filtering, we retained a total of 1,326,461

putative fungal reads (mean = 14,904, median =

7923) corresponding to 194 OTUs. Alpha diversity

estimates at the plot-level suggested that, on average, a

single sample would capture about 1/3 of the site-level

richness. Plots did not differ in diversity between site

or time point, except for estimates of richness between

the sites during the second time point (Fig. 2). At the

site level (Methods 2 and 3), Fourchon was more

diverse than Bay Jimmy (i.e., no overlap of 95%

confidence intervals) during the first time point, but

only for the second Hill order. However, the difference

in diversity between the sites increased at the second

time point as alpha diversity at Fourchon increased in

diversity, relative to the first time point and alpha

diversity at Bay Jimmy decreased relative to the first

time point.

Analyses of the minimum number of samples

needed for statistical consistency at Hill order q = 2

indicated that all sites and time points required a

minimum of 5–6 samples for alpha diversity estimates

to fall within the 95% confidence intervals. At order

q = 1, 8–9 samples were required to reach the same

threshold. At order q = 0, 12–15 samples were

required to consistently estimate species richness

(Fig. 2B, Online Resource 1: Table S4). Filtering out

rare OTUs did not reduce these thresholds. We also

found that 17–20 samples were necessary to arrive at

Bray–Curtis dissimilarity estimates that were consis-

tent with the maximum number of samples per group

according to the MultSE metric (Fig. 3A, Online

Resource 1: Table S8).

We detected patterns of change in the composition

of fungal communities by site and time point.

According to NMDS ordinations and PERMANOVA

tests, community composition differed strongly by site

and time point based on Bray–Curtis dissimilarity

(Online Resource 1: Table S6), Jaccard index and

Aitchison distance values (results not shown). Group

dispersions only differed (Online Resource 1:

Table S6) for sites when measured according to

Jaccard index and Aitchison distance values. Site and

time point differences in community composition

were well illustrated by the NMDS ordination of
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Bray–Curtis dissimilarity values (Fig. 3B). Despite

finding evidence of geographical structure between

sites, we did not detect any within-site spatial

autocorrelation that was consistent across Bray–Curtis

dissimilarity, Jaccard index, and Aitchison distance

values (Online Resource 1: Table S7).

Fig. 2 Comparisons of fungal alpha diversity for each

combination of site and time point. a Alpha diversity as

estimated at the plot-level, site-level, and an incidence-based

diversity, where estimates are calculated as the site richness,

weighted by the number of plots in which each OTU appears

across the site and time point. The y-axis represents the effective

number of species for Hill order = 0 and the x-axis represents

the same for Hill order = 2. The identity line represents where

perfectly even communities would fall on the plot. The mean

diversity of each site and time point is represented by the point,

and error bars represent 95%CI generated from 1000 bootstraps.

b Rarefaction curves for incidence-based diversity as a function

of the number of samples included. The effective number of

species is shown on the y-axis and the number of soil cores

included in each estimate is represented on the x-axis. Error bars

are shown by the shaded area around the line and represent 95%

CI. The point before the dashed line represents the observed

diversity. All points to the left are interpolations of diversity and

the dashed points to the right represent estimates extrapolated

from the curve
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Differential ranking of fungi

A total of 111 OTUs met the filtering criteria for

differential ranking. Of these OTUs, 68% (77 OTUs

and 57% of reads) were Ascomycota and 18% of

OTUs (20 OTUs and 12% of reads) were Basidiomy-

cota. Approximately 13% of OTUs (15 OTUs and

30% of reads) could not be assigned to a phylum. We

designated 97 of the 111 OTUs to be ‘‘dominant’’

OTUs, constituting 85% of the Ascomycota OTUs,

95% of the Basidiomycota OTUs, and 86% of the

unassigned OTUs. For all three groups, the dominant

OTUs represented 99% of the reads of each group.

Fig. 3 Visualizations of differences in community composi-

tion. a MultSE estimations for site and time point. The x-axis

represents the number of samples included in the estimate of

MultSE and the y-axis is an estimate of multivariate variation

where the symbol is the mean variability in the position of the

sample centroid and the error bars are 95% CI. If the CI of two

groups of samples do not overlap, then the groups would be

considered statistically different by PERMANOVA by virtue of

having different group centroids. bNMDS of fungal community

composition based on Bray–Curtis dissimilarity values
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We considered OTUs to be strongly associated with

a site or time point when recovered within the extreme

deciles of site and time point rankings (Fig. 4, Online

Resource 3, Online Resource 2: Figs. 4, 5). Of all the

dominant OTUs, 11 were strongly associated with the

Bay Jimmy site and 12 were strongly associated with

the Fourchon site. We found that nine dominant OTUs

were associated with the first time point and 12 were

associated with the second time point. Only one OTU

was associated with the Bay Jimmy site and strongly

associated with the second time point, while two

OTUs were associated with the Fourchon site and the

second time point. No OTUs were strongly associated

with a single site and the first time point.

Some classes of fungi showed strong associations

with sites and times points. OTUs assigned to Doth-

ideomycetes and Agaricomycetes were associated

with both time points, whereas OTUs assigned to

Eurotiomycetes were strongly associated with the

second time point (Fig. 4) and members of the

Sordariomycetes were primarily associated with the

first time point. Members of the Dothideomycetes

were strongly associated with both sites whereas

OTUs assigned to Sordariomycetes were strongly

Fig. 4 Differential ranking analysis with Songbird according to

site and time point. Rank is on the x-axis and is relative to the

differential on the y-axis. Gray bars represent rare taxa and black

bars represent dominant taxa. Dotted lines demarcate the lower

and upper deciles of the rankings. The genera in the most

extreme deciles are labeled with the genus assigned to the OTU.

a and b classDothideomycetes is evenly ranked according to site
and time point. Extreme rankings are OTUs that are most

abundant at one site or time point relative to the average OTU.

Middle rankings imply little to no change in relative abundance

with respect to the covariate, but do not necessarily signify no

change in absolute abundance. c Class Sordariomycetes are

more abundant at the Bay Jimmy site. d Specific genera in class

Agaricomycetes are strongly associated with one time point or

the other; no OTUs are in the middle rankings
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associated with the Bay Jimmy site (Fig. 4). Of the 11

OTUs associated with the Bay Jimmy site, nine could

be identified to genus: Didymella (2 OTUs), Buer-

generula, Gibberella, Hasegawazyma, Kohlmeyeriop-

sis, Paraconiothyrium, Rhodotorula, Scedosporium.

We were able to assign nine of the 12 OTUs associated

with the Fourchon site to genus: Teratosphaeria,

Aureobasidium, Coniothyrium, Erythrobasidium,

Naganishia, Phaeosphaeria, Rhodotorula (Online

Resource 3: Table S9). We were able to assign nine

of the 12 OTUs associated with the second time point

to genus, which included: Aspergillus (four OTUs),

Penicillium, Phanerochaeate, Symmetrospora, Para-

coniothyrium, and Erythrobasidium. Only four of the

nine OTUs associated with the first time point could be

assigned to the following genera: Exserohilum, Ceri-

poria, Schizophyllum, and Alternaria.

Relationships between oil abundance and fungal

communities

Linear regression did not support a relationship

between total PAH abundance and alpha diversity

(Online Resource 1: Table S5). Likewise, dbRDA and

PERMANOVA did not detect a relationship between

total PAHs and fungal community composition

beyond the influence of site and time point

(ANOVA-like permutation test on margins, Online

resource 1: Table S6).

We also found that total PAH abundance added

negligible predictive power to Songbird models of

differential ranking. A model of site ? time point had

a Q2 of 0.157, and the addition of total PAHs reduced

the Q2 to - 0.05. Visual inspection of Songbird

models indicated overfitting of all models that

included PAHs, whether PAHs were included as the

abundance of all PAHs, individual classes of PAH, or

log-ratios of 3-ring PAHs to chrysenes.

Although differential ranking did not recover a

relationship between differential abundance of OTUs

and total PAHs in our data, we investigated known

hydrocarbon-degrading taxa, based on literature, to

observe any differential associations of these taxa with

sites or time points. Such associations might be

indicative of the oil spill legacy (Fig. 5). We compiled

a list of 196 fungal genera with species described as

being associated with hydrocarbons or having the

ability to metabolize hydrocarbons (Atlas 1981; Kirk

and Gordon 1988; Müncnerová and Augustin 1994;

Cerniglia 1997; da Silva et al. 2003; Verkley et al.

2004; Prince 2010; Furuno et al. 2012; Blasi et al.

2016; Hashem et al. 2018; Prenafeta-Boldú et al.

2018). From this list we identified 17 taxa present at

our two sites, including: Acremonium, Alternaria,

Aspergillus, Aureobasidium, Candida, Chaetomium,

Cladosporium, Colletotrichum, Coniothyrium, Exo-

phiala, Kluyveromyces, Paraconiothyrium, Penicil-

lium, Phanerochaete, Rhodotorula, Scedosporium,

and Trichoderma. Of these 17 genera, Aspergillus,

Candida, Paraconiothyrium, Penicillium, Phane-

rochaete, Rhodotorula have been shown to interact

with one or more of the four PAH classes detected at

our study sites. Differential ranking of hydrocarbon

degraders showed that Rhodotorula lamellibrachiae,

Paraconiothyrium variabile and Scedosporium

minutisporum were more abundant at the Bay Jimmy

site than the Fourchon site. On the other hand,

Aureobasidium pullulans, Rhodotorula mucilaginosa,

and a Coniothyrium sp. were more abundant at the

Fourchon site (Fig. 5A). Only one dominant OTU (an

Alternaria sp.) fell into the decile strongly associated

with the first time point, while six OTUs (representing

four species) were strongly associated with the second

time point. These included Aspergillus niger, Asper-

gillus subversicolor, Penicillium citrinum, Paraco-

niothyrium variabile, and a Phanerochaete sp.

(Fig. 5B).

Discussion

Our findings shed further light on how salt marsh soil

fungal communities responded to oiling from the

DWH oil spill. We detected clear evidence that fungal

community composition differed according to site and

time point three years following the spill. Several

fungal genera were associated with one of the two time

points. Notably, neither alpha nor beta diversity could

be explained by variation in oiling, though we did

recover evidence of known hydrocarbon degrading

taxa genera being relatively more abundant during the

second time point (summer of 2013). Our unbiased

approach to sampling demonstrated that the shoreline

classifications of oiling did not necessarily reflect the

distribution of oil residues on a scale that is meaning-

ful to soil fungal communities. Additionally, our

findings suggest that previous studies have severely

under-sampled marsh soils for the purposes of
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describing differences in alpha and beta diversity of

fungal communities. Given that soil prokaryote com-

munities are frequently estimated to be even more

diverse than the fungal communities examined here

(Thompson et al. 2017), it is possible that similar

sampling thresholds may also apply to studies of

prokaryote communities.

Sampling and characterization of oiling

We found that the oil content of our samples did not

differ by site or time point (Fig. 1), which was

unexpected given the stark differences in oiling

history of our two study sites. Finding comparable

oil content despite notable differences in oiling history

likely in part reflects secondary transport of oil and

differences in the stability of the areas we sampled at

each site. At the Bay Jimmy site, we sampled plots that

were originally located landward of areas that were

subject to initial oil deposition. Over time, however,

the distance separating most of the plots from open

water declined, due to wind-wave driven shoreline

erosion (Bernik et al. 2021). At the Fourchon site, a

small strip of oil residues was known to have been

deposited on the outer meter of amore stable shoreline.

Thus, we can surmise that the PAHs we measured in

Fig. 5 Differential ranking analysis with Songbird, highlight-

ing hydrocarbon degrading taxa. Rank is on the x-axis and is

relative to the differential on the y-axis. Gray bars represent rare

taxa and black bars represent dominant taxa. Dotted lines

demarcate the lower and upper deciles of the rankings. The

genera in the most extreme deciles are labeled with the genus

assigned to the OTU. a OTUs assigned to genera with known

hydrocarbon degrading species. Several are associated with

each site. b Several OTUs classified as yeast that are

phylogenetically related to hydrocarbon degraders are relatively

more abundant during the second time point
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historically ‘‘unoiled’’ areas are representative of

secondary oiling (i.e., redistribution of oil residues

by water or air) of the sampled areas at each site. Other

possibilities are that replanting the Bay Jimmy sites

hastened degradation of the oil residues, as demon-

strated in the experiments of Mendelssohn and Lin

(2002), and/or extensive microbial biodegradation had

already occurred at the Bay Jimmy site. If this is the

case, the indistinguishable PAH compositions of the

two sites may be representative of background levels

of PAH pollution, as southern Louisiana has long been

subject to local and regional oil spills. (Colten et al.

2012).

Although there were no overall differences in PAH

content between the two study sites, we found

evidence of persistent patches of oil residue at the

Bay Jimmy site. This was reflected in several of our

samples that exhibited relatively high PAH content,

comparable in magnitude to levels measured at the site

during surveys conducted in 2011 and 2012 (Zengel

et al. 2015). Evidence of patchiness at the Bay Jimmy

site is consistent with findings from a regional survey

of marsh shorelines (Turner et al. 2019) indicating that

oil residues were initially patchily distributed but

became more evenly redistributed over time. Findings

from the second sampling time point of our Bay

Jimmy site closely resembles those from samples

taken at nearby Bay Batiste in June 2013 by Turner

et al. (2019) in terms of time, geography, oiling

history, erosion rates (McClenachan et al. 2013;

Zengel et al. 2015), and sampling regime. The greater

variability in our samples may be due to differences in

site conditions like the extent of wind-wave action and

shoreline remediation (Zengel et al. 2015). It also may

reflect differences in the scale of shoreline transects

that were sampled at each site; we sampled about one-

eighth of the shoreline length that Turner et al. (2019)

sampled at Bay Batiste. Oil residues at both sites may

be equally patchy but capturing this quality may

require more intensive sampling of a smaller area (i.e.,

at our study site). Nonetheless, the frequency of

residual oil patches was relatively low at both sites,

raising the possibility that we characterized the

response of fungal communities to conditions adjacent

to or between heavily oiled patches.

Oiling and fungal community composition

In addition to finding that alpha and beta diversity of

soil fungi differed between the Bay Jimmy and

Fourchon salt marshes, we detected evidence of site-

specific temporal effects. We expected to observe

higher site-level alpha diversity at the Bay Jimmy site,

in part because the area sampled was larger than the

area sampled at the Fourchon site (Lomolino 2000).

We also expected both sites to become more diverse at

the second time point, reflecting longer days, warmer

temperatures, and higher marsh productivity (Shi-

madzu et al. 2013; Dybala et al. 2015; Tonkin et al.

2017). Our findings were only partially consistent with

expectations. There were negligible differences in

alpha diversity between sites at the first sampling time

point. However, the Fourchon site did become more

diverse at the second time point compared to the first

time point and compared to Bay Jimmy. This was due

to a relative increase in diversity at the Fourchon site,

relative to time point 1, and a relative decrease in

diversity at the Bay Jimmy site relative to time point 1.

It is interesting to compare our results to those of a

related study (Lumibao et al. 2018) of the same sites in

2016. Lumibao et al. (2018) found the Fourchon site to

be more diverse than the Bay Jimmy site during the

summer months, consistent with our findings. The

similarity supports the notion that this pattern is driven

by site-specific conditions, but our results did not find

a relationship between oil residues and differences in

diversity, making it unlikely that oiling history is the

main driver of differences.

Despite temporal changes in alpha diversity, both

sites exhibited consistent signatures of variability in

community composition at both time points, with the

Fourchon site generally being the less variable of the

two. (Fig. 3B, Online Resource: Table S6). It is

important to note that we did not detect relationships

between PAHs and fungal diversity using traditional

analyses like linear regression and dbRDA. This

suggests that any possible influence of PAH abun-

dance on fungal diversity was not measurable three

years after the oil spill. An important caveat, however,

is that our approach to sampling yielded compara-

tively few samples with a high abundance of oil, which

could have constrained our statistical analyses of

relationships with soil fungal communities. This

apparent lack of relationship may also be the result

of replanting at the Bay Jimmy site, which potentially
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changed the trajectory of both oil degradation, (Men-

delssohn and Lin 2002) and the development of fungal

communities, (Cagle et al. 2020) relative to other

heavily oiled sites. Finally, our decision to sample

PAHs and fungi in different portions of the cores may

make correlation analyses unsolid but does not

preclude the possibility that the two are related. We

are not the first to compare oil residues and microbial

communities from two close, but different, spaces

(Engel et al. 2017). But in spite of this design flaw but

we feel that the results are still worth consideration.

Differences between sites and time points

Our findings offer further evidence of site-specific

variation in fungal community structure (Fig. 3B).

Consistent with our observations, Lumibao et al.

(2018) also detected clear differences in community

composition between the same study sites, noting that

fungal communities are likely shaped by geographi-

cally variable drivers such as hydrology and salinity.

We did find some notable patterns related to site-

specific community composition. For example, we

found Dothideomycetes to be diverse and ubiquitous

according to differential ranking. This is consistent

with their cosmopolitan nature (Ohm et al. 2012), but

it is worth noting that certain Dothideomycetes, like

Paraconiothyrium and Phaeosphaeria did show

strong associations with sites and time points. On the

other hand, members of the Agaricomycetes were only

associated with a specific time point, illustrating that a

different class of fungi as more likely to contribute to

variation in the community composition of salt marsh

soil fungal communities.

In general, members of the genera we ranked as

strongly associated with one or the other time point

have been detected as saprotrophs or endophytes in

salt marshes worldwide (Newell 2003; Walker and

Campbell 2009; Kim et al. 2014; Calado 2016; Dini-

Andreote et al. 2016;Mavrodi et al. 2018; Calado et al.

2019). Intriguingly, the genera that ranked as most

differentiated during the second time point (Fig. 5B)

are phylogenetically linked to hydrocarbon degraders

(Verkley et al. 2004; Valentı́n et al. 2006; Prince

2010). While such associations might be indicative of

the oil spill legacy, the increased temporal prevalence

of these taxa should not be viewed as clear evidence of

hydrocarbon driven changes in community composi-

tion. It does suggest, however, that hydrocarbon

degraders are dynamic members of salt marsh soil

fungal communities and may be more relatively

abundant during the warmer summer months.

Sampling and characterization of soil fungi

and other microbiota

We were able to determine benchmark sampling

thresholds necessary to clearly describe variation in

soil fungal diversity and composition that can occur

across marsh shorelines. We found that estimates of

alpha and beta diversity were not stable until at least

5–15 samples were included in analyses, depending on

the metric of interest (Fig. 2, Online Resource 1:

Table S4). This stands in stark contrast to the design of

most prior studies of microbial responses to oil

exposure from the DWH spill, which have relied on

fewer than three samples to characterize microbial

communities at a given site and time point (Beazley

et al. 2012; Bik et al. 2012; Looper et al. 2013;

Mahmoudi et al. 2013; Atlas et al. 2015; Engel et al.

2017; Bae et al. 2018; Tatariw et al. 2018). Further-

more, our results indicate that multinomial regression

(like most general linear models) can be a valuable

tool for characterizing microbial communities. It is

more robust, however, when based on at least 10

replicates per group. This suggests that future work

should involve collecting 10 or more samples per site

to estimate alpha and beta diversity, particularly when

multinomial regression is being conducted for identi-

fication of differentially abundant taxa.

Conclusions

Several long-term studies of oil spill outcomes have

noted that redistribution of oil (Shigenaka 2014; Engel

et al. 2017; Kim et al. 2017) can confound under-

standing of site contamination and recovery. Our study

builds on this idea by demonstrating that local

heterogeneity in soil fungal communities can similarly

confound measurements of ecological diversity. Thus,

steps must be taken to overcome both challenges to

clearly describe the relationship between two noisy

variables: oil residues and microbial diversity. Our

work indicates that high-resolution structured (i.e.,

transect or plot-based) spatiotemporal sampling (En-

gel et al. 2017) should complement targeted sampling

of evidently oiled areas (Looper et al. 2013;
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Mahmoudi et al. 2013; Atlas et al. 2015) to fully

capture the heterogeneity of oiling and microbial

community dynamics. As others have recognized

(Engel et al. 2017), a combined approach may be

especially warranted for salt marshes, where residual

effects of oil spills can be particularly difficult to

capture and to follow over time.
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